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Abstract

The pure state space of Quantum Mechanics is investigated as Hermitian Symmetric Kähler mani-
fold. The classical principles of quantum mechanics (Quantum Superposition Principle, Heisenberg
Uncertainty Principle, Quantum Probability Principle) and Spectral Theory of observables are dis-
cussed in this non-linear geometrical context.
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1. Introduction

Several models ofdelinearization of quantum mechanicshave been proposed (see, for
instance[2,5,11,16,18,21,23]for a complete list of references). Frequently these proposals
are supported by different motivations, but it appears that a common feature is that, more
or less, the delinearization must be paid essentially by the superposition principle.

This attitude can be understood if the delinearization program is worked out in the setting
of a Hilbert spaceH as a ground mathematical structure.

However, as is well known, the ground mathematical structure of QM is the manifold of
(pure) statesP(H), the projective space of the Hilbert spaceH. Since, obviously,P(H) is
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not a linear object, the popular way of thinking that the superposition principle compels the
linearity of the space of states is untenable.

The delinearization program, by itself, is not related in our opinion to attempts to construct
a non-linear extension of QM with operators which act non-linearly on the Hilbert space
H. The true aim of the delinearization program is to free the mathematical foundations of
QM from any reference to linear structure and to linear operators. It appears very gratifying
to be aware of how naturally geometric concepts describe the more relevant aspects of
ordinary QM, suggesting that the geometric approach could be very useful also in solving
open problems in Quantum Theories.

Of course inP(H) remains of the linearity are well present: one of our aims in this paper is
just to show that such remains are represented by the geodesical structure; therefore even the
superposition principlecan be delinearizedwithout affecting its peculiar physical content,
suggesting moreover that manifolds of states endowed with a fair geodesical structure could
be compatible with the superposition principle. Another feature we stress of our work is
that also the spectral theory of observables has a very simple description in terms of the
differential structure ofP(H). Indeed, we will show that the usual linear observables are
described by functions respecting geodesics in the technical detailed meaning coded in the
definition of geolinearity.

A very important bonus of our analysis of observables is the coming out ofsuitable
classes of non-linear observables; about this subject we only anticipate a little in this work,
because it will be the content of a forthcoming paper[9].

Now, as is well known,P(H) is a Kähler manifold[11], but the geodesic structure of a
Kähler manifold may be very involved[4]. Therefore to look atP(H) simply as a Kähler
manifold could not be the best way to bring into focus the role of the geodesic structure we
have stressed above. On the other hand, the geodesic structure is particularly transparent
in the subcategory of Hermitian symmetric spaces as one can see, in the finite dimensional
case, in the book[19].

In Section 2, we briefly review the Kähler structure ofP(H). Then, we discussinfinite
dimensionalsymmetric homogeneousG spaces and their geodesical structure. We prove
thatP(H) is a Hermitian symmetricG space withG = U(H). As a bonus we obtain that
P(H) is simply connected, even in the infinite dimensional case.

In Section 3, we carefully discuss the Superposition Principle and show how SP is tied
up with geodesic structure of pure state space. InSection 4, observables are characterized
in terms of Kähler structure asK functions or, equivalently, in terms of geodesic structure,
as geolinear functions.

In Section 5, we discuss Uncertainty Principle in a strong version which holds for Hermi-
tian symmetricG spaces. InSection 6, we discuss spectral theory and quantum probability
principle for observables, in a natural geometric way.

2. Projective quantum mechanics and Hermitian G spaces

Let us translate standard quantum mechanics (SQM) into geometrical terms, to get pro-
jective quantum mechanics[3,6–8,10–14,16].

Pure states in QM are geometrically described as the points of an infinite dimensional
Kähler manifoldP(H), the projective spaceof the Hilbert spaceH of the system. The
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pointsϕ̂, ψ̂, . . . of P(H) (i.e. the rays ofH generated by non-zero vectorsϕ,ψ of H) are
the (pure) states of the quantum system.

P(H), as a complex manifold, can be canonically regarded as a real smooth manifold
with an integrable almost complex structureJ . The manifold(P(H), J ) is endowed with a
natural Kählerian metric, i.e. a Riemannian metricg such that

1. gϕ̂ (v, w) = gϕ̂ (Jv, Jw), v,w ∈ Tϕ̂P(H);
2. the associated fundamental 2-form

ωϕ̂(v,w) := gϕ̂ (Jv,w)

is closed, hence symplectic.

The natural Kähler metric ofP(H) is the Fubini–Study metric

gϕ̂ (v, w) = 2κR(v|w),
wherev = Tϕ̂bϕ(v), w = Tϕ̂bϕ(w), and the associated fundamental 2-form

ωϕ̂(v,w) = 2κI(v, |w),
whereκ > 0 is an (arbitrary) constant. We recall thatbϕ is the chart at̂ϕ [7]. To get a correct
correspondence with ordinary quantum mechanics, one must assumeκ = �.

2.1. Symmetric homogeneousG spaces

Finite dimensional homogeneousGspaces are widely discussed in the literature. Standard
reference books are[17,19]. As there are only a few references for the infinite dimensional
setting[25], we shortly review definitions and properties in the context of Banach mani-
folds. The proofs are given only in the case where the extension from finite to the infinite
dimensional setting is not easy. Byordinary Banach manifold, we mean a second countable
connected Hausdorff smooth Banach manifoldM. LetG be an ordinary Banach–Lie group
acting onM. Then the pair(M,G) will be said to be ahomogeneous G spaceif:

1. the action ofG onM is smooth and transitive;
2. the isotropy groupGx atx is a Lie subgroup ofG for x ∈ M.

Since the mappingφ : g �→ gx of G ontoM is continuous,Gx = φ−1(x) is a closed
Lie subgroup ofG. ThusG/Gx has a unique smooth (actually, analytic) structure with
the property thatG/Gx is aG space and the canonical mapπ : G → G/Gx is smooth
(actually, analytic) and open. To prove that the induced surjectionϕx : G/Gx → M is an
homeomorphism we have just to prove that it is open. This follows by Theorem A.I.1 in
[1]. Arguing as in Proposition 4.3 in[17], we obtain thatϕx is a diffeomorphism.

The symmetricG spaces constitute an important class of homogeneousG spaces. A
symmetric G spaceis a triple(M,G, s) where(M,G) is a homogeneousG space ands
is an involutive diffeomorphism ofM with an isolated fixed pointo. Given a symmetric
G space(M,G, s) we construct for each pointx of the quotient spaceM = G/Go an
involutive diffeomorphismsx , called thesymmetry at x, which hasx as isolated fixed point:
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for x = go, we setsx = g ◦ s ◦ g−1. Thensx is independent of the choice of theg such that
x = go. There is a unique involutive automorphismσ of G such thatσ(g) = s(go).

In every symmetricG space(M,G, s) one has

g = h+m,
wherem = {A ∈ g : σe(A) = −A} (we denote byσe the derivative ofσ at e) is Ad(Gx)
invariant and complementsh in g.

A complex symmetric G spaceis a complex Banach manifoldM which is also a sym-
metricG space with holomorphic symmetries and automorphisms. LetM be a real Banach
manifold. Analmost complex structure JonM is a smooth tensor field onM whose value
at any pointx of M is a complex structureJx on the tangent spaceTxM at x. A smooth
map between almost complex manifolds is said to bealmost complexif its derivative at
each point of the domain is complex linear. An almost complex structureJ onM is said
to be acomplex structureonM if there exists a smooth almost complex chart at any point
x ∈ M. If J is a complex structure onM, then the collection of all such almost complex
charts constitutes an atlas onM whose transition functions are holomorphic; we can thus
regardM as a complex manifold.

Let us now come toP(H) and give it the structure of infinite dimensional complex
symmetric homogeneousG space. We denote byU(H) the Banach–Lie group of unitary
operators ofH, byu(H) its Lie algebra and byS1(H) the unit ball ofH. The natural action
of U(H) onS1(H) is transitive and quotients to the natural action ofU(H) on P(H).

Proposition 1. The projective spaceP(H) is a complex symmetric G space with automor-
phism groupG = U(H). The scalar product onm induces onP(H) the Fubini–Study
metric.

Proof. Forχ ∈ S1(H)we denote byUχ̂ (H) the stabilizer subgroup of̂χ w.r.t. the quotient
action.Uχ̂ (H) is a closed subgroup ofU(H) and a Banach–Lie group with Lie algebra
the subspace of anti-self-adjoint bounded operators commuting with the one dimensional
projection operatorPχ on the ray generated byχ . In fact,Lie(Uχ̂ (H)) is a splitting sub-
space ofu(H), so thatUχ̂ (H) is a Lie subgroup ofU(H). If one changes the vectorχ , one
obtains a conjugate Lie group. Then by standard argumentsP(H) is diffeomorphic to the
orbit spaceU(H)/Uχ̂ (H) [17]. We also remark that the projection operator inu(H) with
rangeLie(Uχ̂ (H))

A �→ PχAPχ + (1 − Pχ)A(1 − Pχ)

is Ad(Uχ̂ (H)) invariant.
Forχ ∈ S1(H) one consider the symmetryS defined byS = 1− 2Pχ . Then one defines

the involutive automorphismσ of U(H) by the conjugationA �→ SAS−1. The stability
subgroup ofσ isUχ̂ (H). As a consequence, the quotient spaceU(H)/Uχ̂ (H) is a symmetric
U(H) space. One could identify(P(H), U(H), S) with (U(H)/Uχ̂ (H), U(H), S).

To the symmetricU(H)space(P(H), U(H), S) it is associated thesymmetric Banach–Lie
algebra(Lie(U(H)),Lie(Uχ̂ (H), σ )), where

g  Lie(U(H)) = u(H), h  Lie(Uχ̂ (H)) = u(H) ∩ S′,
i.e. the commutant ofPχ in u(H).



R. Cirelli et al. / Journal of Geometry and Physics 45 (2003) 267–284 271

Finally,m is the anticommutant ofPχ in u(H). We remark thatσ is an involutive norm
preserving Lie algebra automorphism.

We can define anAd(Uχ̂ (H)) invariant scalar product inm by

(A,B) := −κ Tr(AB).

The subspacem is canonically identified with the tangent space atχ̂ . Thus we get a Rie-
mannian metricg on P(H).

The complex structure inχ⊥ induces anAd(Uχ̂ (H)) invariant complex structureJ onm.
Thus a complex structure is induced onP(H). The proof that the metricg and the complex
structureJ correspond to the Fubini–Study metric and to the canonical complex structure
of P(H) is a simple adaptation of the analogous finite dimensional statement[19]. �

Corollary 1. The projective spaceP(H) is connected and simply connected.

Proof. This topological property is well known in the finite dimensional case[19]. In the
infinite dimensional case it was proved by Kuiper[20] that the unitary groupU(H) is
contractible. We have the exact sequence

π1(Uχ̂ (H))→ π1(U(H)) → π1(U(H)/Uχ̂ (H)) → π0(Uχ̂ (H))

→ π0(U(H)) → (U(H)/Uχ̂ (H)).

The exponential mapu(H) → U(H) is onto by a theorem of de la Harpe[15]. Therefore
the isotropy subgroupUχ(H) is connected. Thus byProposition 1, we obtain thatP(H) is
connected and simply connected. �

2.2. The Riemannian and Hermitian case

Let (M,G, s) be a symmetric homogeneousG space. We denote byH its stability
subgroup. So we can identifyM with the coset spaceG/H . We denote byo the equivalence
class ofe.

Thecanonical connection∇ onM is defined by

∇v(Y ) := [X(v), Y ]x, v ∈ TxM
for all vector fieldsY defined aroundx. This definition is consistent with the classical
definition given by Kobayashi and Nomizu[19]. The canonical connection is invariant and
complete.

We define, forv ∈ m andt ∈ R

cv : t �→= exp(tv)o.

For everyv ∈ m the curvecv is a geodesic starting fromo of the canonical connection;
conversely, every geodesic fromo is of the formcv for somev ∈ m.

Torsion and curvature of the canonical connection are discussed in[19]. Every symmetric
homogeneousGspace admits a unique torsion freeG invariant affine connection, thenatural
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torsion free connection[19]. The natural torsion free connection has the same geodesics
that the canonical connection.

Proposition 2. If (M,G, s) is symmetric, there is a natural bijection between the set of all
subspacesm′ ofm such that

[[m′,m′],m′] ⊂ m′

and the set of all complete totally geodesic submanifoldsM ′ of M (through o).

If (M,G, s) is symmetric Riemannian, then all symmetries are isometries and the canon-
ical decomposition is orthogonal. Moreover, the canonical connection is the unique affine
connection onM which is invariant w.r.t. all symmetries ofM. We denote byT its torsion
and byR its curvature.

Proposition 3. The canonical connection satisfies

1. T = 0, ∇R = 0;

R(u, v)w = −[[u, v], w] for u, v,w ∈ m.
2. For everyv ∈ m the parallel transport alongπ(exp(tv)) agrees with the differential of

the transformationexp(tv) on M.
3. for everyv ∈ m

π(exp(tv)) = exp(tv)o

is a geodesic from o and conversely, every geodesic from o is of this form.
4. EveryG invariant tensor field onM is parallel.

As a consequence, for every symmetric RiemannianG space(M,G, s,g) the canonical
connection agrees with the natural torsion free connection. Moreover, the Riemannian metric
onM induces the canonical connection.

A Hermitian symmetric G spaceis given by(M,G, s,g, J ), where(M,G, s,g) is a
Riemannian symmetricG space andJ is an almost complex structure onJ , which is
symmetry invariant. Then∇J = 0, J is integrable, so that(M, J ) is a complex manifold.

Proposition 4. Let (M,g, J ) with J almost complex andg Hermitian metric. Then:

1. If (M,G, s, J ) is a complex symmetric G space, then J is integrable andg is Kähler.
2. If (g, J ) is a Kähler structure on a symmetric Riemann G space(M,G, s,g), then
(M,G, s,g, J ) is Hermitian symmetric G space.

We refer to(M,g, J ) as to the Kähler manifold underlying(M,G, s,g, J ).

Proposition 5. Let (M,G, s) be a symmetric homogeneous G space, with isotropy group
H:
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1. If m admits some Ad(H) invariant complex structure I, then M admits an invariant
complex structure such that the canonical connection is complex and M is complex
affine symmetric.

2. If, moreover, m admits an Ad(H) invariant scalar product which is Hermitian w.r.t. I,
then M admits an invariant Kähler metric and is Hermitian symmetric.

We recall that a connected submanifoldS of a Riemannian manifoldM is geodesic at
m ∈ S if, for every v ∈ TmM, the geodesiccm,v(t) determined byv lies in S for small
values of the parametert . If S is geodesic at every point ofS, it is called atotally geodesic
submanifoldof M. By the above remarks we get that geodesics and hence totally geodesic
submanifolds of a symmetric Riemannian space can be equivalently characterized as the
geodesics and the totally geodesic submanifolds w.r.t. the canonical connection.

Closed complex totally geodesic submanifolds of a Hermitian symmetricG space cor-
responds to closed complexAd(H) invariant subspaces ofm [19]. In the particular case of
the projective spaceP(H), every closed complex subspace ofm is Ad(H) invariant. So we
have the following proposition.

Proposition 6. The projective spaceP(H),with the Fubini–Study metric, is the Kähler man-
ifold underlying to the Hermitian symmetric space(P(H), U(H), S, g, J ). Closed complex
totally geodesic submanifolds ofP(H) at some point ofP(H) correspond exactly to closed
J invariant subspaces ofm.

We have shown thatP(H) is a Hermitian symmetricG space. Hermitian symmetricG
spacesM are naturally reductive and the canonical connection, the natural torsion free
connection and the Riemannian connection agree[19]. Complete totally geodesic subman-
ifolds through some pointm in M correspond bijectively toAd(H) andJ invariant closed
subspaces ofm [19]. In the particular case ofM = P(H) one sees thatAd(H) invariant
subspaces ofm are precisely theJ invariant ones. Varying the point inP(H), we see that
the family of all closed totally geodesic submanifolds ofP(H) are identified with the family
of all closed complex subspaces ofH. Of course, the manifoldP(H) itself is considered as
totally geodesic at any point. In this way we obtain a geometric interpretation ofQuantum
LogicL(H).

We stress that quantum logic has a relevant role in foundations of QM[22]. We can
analogously prove that closed totally geodesic submanifolds of any Hermitian symmetric
Gspace have the algebraic structure of a quantum logic. So it is very surprising and gratifying
to see that this structure naturally appears in the general geometrical context of Hermitian
symmetricG spaces.

3. Superposition principle and the geodesic structure of P(H)

The projective spaceP(H) is metrically complete; the distance is

d(ϕ̂, ψ̂) =
√

2� arccos|(ϕ|ψ)|.
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The diameter ofP(H) is finite and equals
√

2�. Theequatorof ϕ̂ is the set of allψ̂ such
thatd(ϕ̂, ψ̂) = 1

2 diam(P(H)). Theantipodal submanifold̂ϕ⊥ of ϕ̂ is the set ofψ̂ ∈ P(H)
such that

d(ϕ̂, ψ̂) =
√

2�.

We remark that the antipodal submanifoldϕ̂⊥ is the maximal closed complex totally
geodesic submanifold ofP(H) not containingϕ̂.

Antipodality has a very remarkable content: it translates intoP(H) orthogonality:

1. ϕ̂, ψ̂ ∈ P(H) antipodal if and only if(ϕ|ψ) = 0;
2. ϕ̂, ψ̂ ∈ P(H) antipodal if and only ifd(ϕ̂, ψ̂) = diam(P(H));
3. ϕ̂, ψ̂ ∈ P(H) antipodal if and only ifψ̂ ∈ Cϕ̂ ,

with Cϕ̂ thecut locusof ϕ̂, i.e. the complement of the greatest open neighborhoodUϕ̂ of ϕ̂
such that any point ofUϕ̂ might be connected tôϕ by means of one and only one minimal
geodesic.

For everyϕ̂ ∈ P(H), the exponential map

Expϕ̂ : Tϕ̂P(H) → P(H)

is defined on the wholeTϕ̂P(H) and theinjectivity radius

Ri
ϕ̂

:= sup{ρ > 0|Expϕ̂�B(0ϕ̂; ρ) is injective}
(B(0ϕ̂; ρ) is the closed ball with radiusρ centered at 0̂ϕ) is constant and equals�π .

The mathematical formulation of Superposition Principle in the SQM is very well known
(SP):

With the due care to normalization properties, superpositions meanC-linear combina-
tions.

Translation intoP(H) is not particularly hard.StatementSP1:
For any pair of distinct pointŝϕ, ψ̂ the set of all superpositions of these two states is

P(Hϕ,ψ), the projective of the two-dimensional subspace ofH generated by any pairϕ,ψ
of representatives of̂ϕ, ψ̂ .

For a sharp understanding of SP1 one must supply a pointed geometrical characterization
of P(Hϕ,ψ) as a subset ofP(H). This is done by looking at the geodesic structure ofP(H).
Let v ∈ Tϕ̂P(H), with normalized local representativeξ ∈ ϕ⊥. The geodesic tangent in̂ϕ
to v is

cϕ̂,v(t) = p
(
ϕ cos

t√
2�

+ ξ sin
t√
2�

)
,

wherep : S1(H) → P(H) denotes the canonical surjection. In particular,cϕ̂,v(π
√

�/2) =
p(ξ), so thatξ̂ is the (unique) antipodal point tôϕ lying on the geodesiccϕ̂,v.

More generally, ifv = ρξ with ‖v‖ = ρ is a local representative ofv ∈ Tϕ̂P(H), the
geodesiccϕ̂,v(t) is given by

cϕ̂,v(t) = p
(
ϕ cos

ρt√
2�

+ ξ sin
ρt√
2�

)
.
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Now, using the geodesic structure ofP(H), one easily sees that statement SP1 is equivalent
to the followingstatementSP2:

For any pairϕ̂, ψ̂(ϕ̂ �= ψ̂) the set of all superpositions ofϕ̂ andψ̂ is the smallest totally
geodesic submanifold ofP(H) containingϕ̂, ψ̂ .

For a complete geometric description of the physical content of superposition principle,
we must be able to characterizesingle superpositions of states. We remark thatξ is a
representative vector for the unique antipodal point toϕ̂ lying on the geodesiccϕ̂,v. A point
χ̂ of P(H) belongs tocϕ̂,v if and only if χ̂ ∈ P(Hϕ,ξ ) and for some normalized vector
ϕ ∈ ϕ̂, one has

(ξ |χ)
(ϕ|χ) ∈ R.

In particular, ifξ is a normalized representative for some antipodal point toϕ̂, thenχ̂ =
ϕ̂ + ξ lies on the geodesiccϕ̂,v. Thusχ̂ lies on the intersection of the equator ofϕ̂ with the
geodesiccϕ̂,v. Conversely, this intersection point determines the geodesiccϕ̂,v. Any other
point of the geodesic is the ray corresponding to some linear combinationαϕ + βψ with
realα andβ. This intersection point is conveniently characterized asbϕ(ψ) (or asbψ(ϕ),
since these rays are equal).

Geodesics connecting two antipodal pointsϕ̂ andψ̂ describe linear combinationsαϕ+βψ
with complex quotientα/β and are obtained alterating the representative normalized vector
for ψ̂ .

So we arrive tostatementSP3:
If ϕ,ψ are orthogonal versors andα, β ∈ C − {0}, and

χ = αϕ + βψ,

then

χ̂ = cϕ̂,v

(
arctan

(√
2�

∣∣∣∣βα
∣∣∣∣)) ,

where the tangent vectorv corresponds in the chartbϕ to eiθψ , with θ denoting the relative
phasearg(β/α) of α andβ.

Therefore the full geometric formulation of the quantum superposition principle inP(H)
is given bySP2 + SP3.

By the above discussion we see the physical relevance of the geodesic structure of the
manifold of states. In general, we could conclude that for a purely “kinematical” formulation
of the QSP we need, as a space of states, a manifoldM equipped with a “convenient”
geodesical structure. By the above discussion we conclude that such a convenient geodesical
structure is provided by the structure of Hermitian symmetricG space. Of course, in this
more general context, superpositions of two states are represented by the closed totally
geodesic submanifold they generate.

Thinking of the well-known paper of Wick et al.[24] we can define asuperselection
sectorof a Hermitian symmetric spaceM:

A superselection sector of M is a closed complex submanifold N of M such that for any
pair x ∈ N , y ∈ M −N there is no geodesic connecting x with y.
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Thus superselection sectors are just connected components ofM. Hence the projective
spaceP(H) does not admit any not trivial superselection sector. We can, however, introduce
superselection sectors on projective quantum mechanics by means of disjoint union of
projective spaces.

4. Quantum superposition principle and observables

Let us remember, first of all, thatobservablesof projective quantum mechanics arereal
mean value mapsof bounded self-adjoint operators onH, i.e. smooth mapsf : P(H) → R
of the typef (ϕ̂) = 〈A〉ϕ̂ , where forA ∈ Bsa(H) andϕ ∈ H with ‖ϕ‖ = 1, we define
〈A〉ϕ̂ := (Aϕ|ϕ).

The map〈A〉 is Hamiltonian, with Hamiltonian vector fieldv〈A〉 defined by

dϕ̂〈A〉(ξ) = ωϕ̂(v〈A〉(ϕ̂), ξ) for ξ ∈ ϕ⊥.

A Killing vector fieldon a Riemannian manifold(M,g) is a complete vector fieldξ whose
flow preserves the Riemannian structure (i.e.Lξg = 0). The following theorem was proved
in [7].

Theorem 1. A vector fieldξ onP(H) is Killing if and only if there is a self-adjoint operator
A ∈ L(H) such thatξ = v〈A〉.

A Hamiltonian functionf on a Kähler manifold is said to be aK functionif its Hamiltonian
vector fieldvf is Killing.

A smooth mapf : P(H) → R is geolinearif

f (cϕ̂,v(t)) = f (ϕ̂)+
(

sin
t√
2�

cos
t√
2�

)
dϕ̂f (v)+ sin2 t√

2�
Hesŝϕf (v, v)

(ϕ̂ ∈ P(H), v ∈ Tϕ̂P(H) is a versor andt ∈ R), wherecϕ̂,v is the geodesic througĥϕ along
v. We have proved in[7] the following theorem.

Theorem 2. A mapf : P(H) → R is geolinear if and only if there is a self-adjoint operator
A ∈ L(H) such thatf = 〈A〉.

Thus theK functions onP(H) are precisely the geolinear maps and can be character-
ized as functions preserving (in this particular sense) the superpositions and correspond to
expectation value functions of bounded self-adjoint operators onH.

We see fromTheorems 1 and 2that in projective quantum mechanics there is a strict link,
as expected, between observables and the dynamical vector fields; but the really remarkable
feature is the characterization of observables (asgeolinear maps) and of dynamical vector
fields (asKilling vector fields) with no more reference to mean value maps.

It could be of interest also to consider some Hamiltonian dynamics which not necessarily
respect the Riemannian structure. So also non-linear observables and non-linear dynamic
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evolutions could be suitably introduced. We will discuss this important point in a forth-
coming paper[9]. Here we simply want to anticipate, as an example, some of suchflexible
observableson P(H).

We consider as example of a flexible observable the function

F := 〈A〉〈B〉, A, B ∈ Bsa(H).

Since

(dϕ̂〈F 〉)(w) = 〈B〉ϕ̂ω(vA(ϕ̂), w)+ 〈A〉ϕ̂ω(vB(ϕ̂), w),
we have

v〈F 〉 = 〈A〉vB + 〈B〉vA.
We stress that by the above discussion we can conclude thatin principle it is possible to
maintain the QSP in a non-linear QM provided the following conditions are respected:

1. the space of pure states is a symmetric Hermitian manifold(M,G, s, J,g);
2. the superpositions ofx, y ∈ M, (x �= y), are the points of the smallest closed J invariant

totally geodesic submanifold containing x and y;
3. the observables are those mapsf : M → R that preserve superpositions(the K func-

tions);
4. the dynamical evolution is given by a vector field that preserves the Riemannian structure,

i.e. by a Killing vector field on(M,g).
We could add:

4.1. the flexible dynamical evolution is given by Hamiltonian vector fields associated to
some selected family of flexible observables.

So we can introduce non-linear dynamics.

5. Uncertainty principle and Hermitian structure

In SQM for each observableA ∈ Bsa(H) thedispersionin the “state”ϕ is introduced

5ϕA := ‖Aϕ − (ϕ|Aϕ)ϕ)‖, ϕ ∈ S1(H),

and the Heisenberg uncertainty principle (HUP) is stated as follows.

Proposition 7. For everyA,B ∈ Bsa(H) and everyϕ ∈ S1(H) the Heisenberg inequality
holds:

5ϕA ·5ϕB ≥ 1
2|(ϕ|[A,B]ϕ)|.

Therefore, in the natural Poisson structure[11–13]one has

{〈A〉, 〈B〉} =
〈−i

�
[A,B]

〉
,
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5ϕA =
√

1
2�‖v〈A〉(ϕ̂)‖g,

and the Heisenberg inequality can be written as

|{〈A〉, 〈B〉}(ϕ̂)| ≤ ‖v〈A〉(ϕ̂)‖g‖v〈B〉(ϕ̂)‖g,

that is

|ωϕ̂(v〈A〉(ϕ̂), v〈B〉(ϕ̂))| ≤ ‖v〈A〉(ϕ̂)‖g‖v〈B〉(ϕ̂)‖g.

Heisenberg inequality is nothing more than the uniform continuity of the symplectic form
(or of the Poisson product) with respect to the topology induced on the tangent space by the
Riemannian structure. The above argument also works for any pair of smooth functions, so
we are lead outside of the realm of ordinary QM.

Rebus sic stantibus, we can say that the HUP can be formulated in a general setting which
does not depend on the linearity properties of the setting.

LetM be a manifold endowed with a symplectic structureω and a metric structureg. We
say that the HUP holds in(M,ω,g) if the symplectic form is uniformly continuous with
respect to the topology of the tangent space induced by the metric, i.e. if

∃a ∈ R+, such that∀x ∈ M, |{f, h}(x)| ≤ a‖vf (x)‖g‖vh(x)‖g (HUP)

for any pair of Hamiltonian functionsf, h (with Hamiltonian vector fieldvf andvh, re-
spectively). Indeed, if HUP holds and we define

5xf :=
√

1
2r‖vf (x)‖g,

where

r := min{a ∈ R+ such that HUP holds},
then

5xf5xh ≥ 1
2|{f, h}(x)|.

One could also introduce the dispersion function for a fieldX by

5xX :=
√

1
2r(gx(Xx,Xx))

1/2

getting

5xX5xY ≥ 1
2r|ωx(Xx, Yx)|.

Therefore, adding a fifth requirement to the requirements (1)–(4) above, we can draw the
conclusion.

In principle it is possible to maintain the QSP and the HUP in a non-linear quantum
mechanics assuming(1)–(4)as above and

5. the Riemannian manifold(M,g) of pure states is endowed with a symplectic formω
which is uniformly continuous with respect tog.



R. Cirelli et al. / Journal of Geometry and Physics 45 (2003) 267–284 279

In particular, this holds in any Hermitian symmetric spaceM, but we can say more.
Actually, HUP holds withr = 1 since the complex structure operator is unitary. Moreover,
the set of Killing vector fields ofM is full, i.e. every tangent vectorv atx belongs to some
Killing vector field, for everyx ∈ M. To see this, giveny ∈ M, choose someg ∈ G such
thaty = gx. Then defineξy := g∗(v). One easily verifies thatξ is a (well defined) Killing
vector field.

In any Hermitian symmetric spaceM, HUP can be stated in a strong form.

Proposition 8. If M is a Hermitian symmetric space, then for every vector field X and every
x ∈ M there exists a Killing vector field K such that

5xX5xK = |ωx(Xx,Kx)|.

Proof. We can assume5xX �= 0. We know by HUP that for every vector fieldY there
existsλ ∈ R+ such that

λ2gx(Yx, Yx) ≥ (ωx(Xx, Yx))
2.

In particular, this holds for any Killing vector fieldK such that

Kx = Yx = JxXx.

We obtain

λ2gx(Kx,Kx) = λ2gx(Xx,Xx) ≥ (ωx(Xx, JxXx))
2 = (gx(Xx,Xx))2,

so that

λ2 ≥ gx(Xx,Xx) = 252
xX

as required. �

A natural physical requirement is that all Killing vector fields are Hamiltonian. This is
true ifM is simply connected. In every simply connected Hermitian symmetric spaceM,
the set ofK functions isfull, i.e. the differentials ofK functions span the whole cotangent
spaceT ∗

x M, for everyx ∈ M. This implies that for everyK functionf andx ∈ M there
exists aK functionh such that

|{f, h}(x)| = ‖vf (x)‖g‖vh(x)‖g

(see Proposition 4.5 in[11]).
The Cartan Ambrose Hicks theorem allows one to characterize simply connected symmet-

ric (complex) manifolds as (complex) Banach manifolds admitting a geodesically complete
torsion free affine connection whose curvature tensor is parallel[25].

The dispersion function is well defined also for non-geolinear functions. In particular,
for a flexible observable we have

52
ϕ̂
(〈F 〉) = 〈B〉2

ϕ̂
52
ϕ̂
(〈A〉)+ 〈A〉2

ϕ̂
52
ϕ̂
(B)+ 2〈A〉ϕ̂〈B〉ϕ̂〈A ◦ B〉ϕ̂ ,
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whereA ◦ B denotes the Jordan product. In particular, ifA andB commute

52
ϕ̂
(〈F 〉) = 〈B〉2

ϕ̂
52
ϕ̂
(〈A〉)+ 〈A〉2

ϕ̂
52
ϕ̂
(B)+ 2〈A〉ϕ̂〈B〉ϕ̂〈AB〉ϕ̂ .

6. Spectral theory and quantum probability principle

In this section, we show that ordinary spectral theory for self-adjoint operators can be
easy recovered by the corresponding Killing vector fields and the dispersion function. But
it has to be stressed that this formulation works very well also fornon-Killing vector fields.
This opens the possibility to found a non-linear spectral theory. For previous attempts in
this direction, see[3].

We can define the spectrum of〈A〉 for A ∈ Bsa(H). We say that:

1. λ ∈ R is aregular valueif

∃ε > 0 such that 〈(A− λ)2〉ϕ̂ > ε ∀ϕ̂ ∈ P(H);
2. λ is aeigenvalueif

〈(A− λ)2〉ϕ̂ = 0 for some ϕ̂ ∈ P(H);
3. λ belongs to continuous spectrumif

〈(A− λ)2〉ϕ̂ > 0 ∀ϕ̂ ∈ P(H), and ∃{ϕ̂n} such that〈(A− λ)2〉ϕ̂n → 0.

This definition of spectrum agrees with the standard one forA ∈ Bsa(H). However, this
definition immediately extends toevery Hamiltonian functionon P(H).

Now we discuss spectral aspects in terms of the Hamiltonian vector fieldv〈A〉.
First, we remark that

v〈(A−λ)〉 = v〈A〉,

so that the Hamiltonian vector fields, alone, do not allows to characterize the spectral points.
However, since

�‖v〈A〉(0)‖ = ‖Aϕ − (Aϕ|ϕ)ϕ‖,
we get thatv〈A〉(ϕ̂) = 0 if and only if

Aϕ = λϕ with λ = (Aϕ|ϕ).
To get eigenvectors ofA consider those versorsϕ such thatv〈A〉(ϕ̂) = 0; the corresponding
eigenvalue is given by〈A〉ϕ̂ .

We can also characterize the points of continuous spectrum. Aλ ∈ R belongs to the
spectrum ofA if and only if for everyε > 0 there exists a versorϕ such that

‖(A− λ)ϕ‖ < ε.
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This implies that there exists a sequence{ϕn} of versors such that

lim
n
(Aϕn|ϕn) = λ,

so that

‖(A− (Aϕn|ϕn))ϕn‖ → 0.

This means that the sequence{(Aϕn|ϕn)} is Cauchy and that5ϕnA → 0. The last condition
amounts to the request that the local expression of the fieldv〈A〉(ϕ̂n) in the chartbϕn goes
to 0 forn → ∞.

Conversely, letλ ∈ R such that for some sequence{ϕ̂n}
〈A〉ϕ̂n → λ, 5ϕnA → 0

thenλ belongs to the spectrum ofA; if, moreover, it does not exists anŷϕ such that

〈A〉ϕ̂ = λ, v〈A〉(ϕ̂) = 0

thenλ belongs to the continuous spectrum ofA.
We also remark that

�‖v〈A〉(0)‖2 = ‖Aϕ − (ϕ|Aϕ)ϕ‖2 = 〈A2〉ϕ̂ − 〈A〉2
ϕ̂
.

We conclude thatλ belongs to the spectrum ofA if and only if there exists a sequence{ϕ̂n}
such that

〈A〉ϕ̂n → λ, 〈A2〉ϕ̂n → λ2.

For a given linear operatorA defined onH, A �= 0, we define theregularity domainof A
as the open set

P(H)− P(KerA) = {ϕ̂ ∈ P(H)|Aϕ �= 0}.
We observe thatA quotients to a transformation

Â : D
Â

→ P(H), Âϕ̂ := Âϕ,

whereD
Â

:= P(H)− P(KerA). The transformation̂A is smooth if and only ifA ∈ B(H).
We can use regularity domains to characterize the spectra of bounded self-adjoint oper-

ators. LetA ∈ Bsa(H). Thenλ ∈ R is said to beregular value for Aif:

1. D
(Â−λ) = P(H);

2. (Â− λ) is a diffeomorphism.

We say thatλ is aspectral value for Aif it is not a regular value.
This means that either

1. D
(Â−λ) �= P(H);

or
2. D

(Â−λ) = P(H) but (Â− λ) is not a diffeomorphism.

We remark that(Â− λ) is a smooth bijection, but its inverse can fail to be smooth.
Spectral valuesλ of type (1) are said to beeigenvalues of̂A. Spectral values of type (2) are
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said to belong to thecontinuous spectrum of̂A. This definition of spectrum agrees with the
precedent one.

Remark. We know that(A−λ)−1, if it exists, is a linear operator defined on all the Hilbert
spaceH, therefore the quotient map(Â− λ)−1 exists and agrees with(Â− λ)−1; hence
(Â− λ)−1 is smooth if and only if(A− λ)−1 ∈ B(H).

Coming to the probabilistic interpretation, we remember that in SQM the following rule
is posited:

The probability that a measurement of the observable A(s.a. operator ofH) in the state
W (von Neumann density operator onH) gives an outcome in a Borel set X onR is given
by

P(A,W,X) = Tr(WQA(X)),

whereQA is the spectral measure ofA.
A quantum probability measureforH is a mapµ : L(H) → R+ such thatµ(1) = 1 and

µ(P +Q) = µ(P )+ µ(Q),

wheneverP andQ are orthogonal. Remember thatL(H) denotes the quantum logic ofH.
If, whenever{Pi}i∈I is a family of mutually orthogonal projections,

∑
iµ(Pi) is conver-

gent and

µ

(∑
i

Pi

)
=
∑
i

µ(Pi),

thenµ is said to becompletely additive. Completely additive quantum probability measures
form a convex set,the set of states ofH.

To every rayϕ̂ we can associate the projection operator on the rayPϕ̂ . Then the map

µϕ̂ : L(H) → R, Q �→ µϕ̂(Q) := Tr(Pϕ̂Q)

is a completely additive quantum probability measure. Moreover,µϕ̂ is pure, i.e. cannot be
not trivially expressed as convex combination of quantum probability measures.

The essential content of Gleason Theorem is that every completely additive quantum
probability measureµ onL(H) has a unique extension to a positive normal functionalΦµ
onB(H), wheneverdim(H) > 2. This implies that there exists a unique positive, self-adjoint
trace class operator (density operator) W such thatTrW = 1 and

Φµ(A) = Tr(WA) ∀A ∈ B(H).
Equivalently,

µ(Q) = Tr(WQ)

for every projection operatorQ. In particular,Φµ is pure if and only ifW is a one-dimensional
projection operator, i.e. ifµ = µϕ̂ for someϕ̂ ∈ P(H).
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Therefore, mixed states can be interpreted as probability measures on the family of
closed totally geodesic submanifolds ofP(H). Elements ofP(H) (pure states) corresponds
precisely to pure probability measures.

It is well known by spectral theory of density operators that functionalsΦµ can be
uniquely expressed as probability measures onP(H), or else asσ convex combinations of
pure states.

We are able to characterize the trace functional and probability transition map in terms
of the metric structure ofP(H). In the projective space totally geodesic submanifoldsM

correspond to projection operatorsQM on the Hilbert spaceH, with the property thatM
is canonically identified with the projective space of the range ofQM . Then〈QM 〉 is the
unique geolinear map such that

〈QM 〉ϕ̂ = 1 ∀ϕ̂ ∈ M, 〈QM 〉ϕ̂ = 0 ∀ϕ̂ ∈ M⊥ = P(KerQM).

In particular, there is a unique geolinear map〈Qϕ̂〉 such that

〈Qϕ̂〉ϕ̂ = 1, 〈Qϕ̂〉ψ̂ = 0 for ψ̂ ∈ ϕ̂⊥.

So we obtain the probability transition map

〈ϕ̂|ψ̂〉 := 〈Qϕ̂〉ψ̂ .
So traces and probability transitions are obtained as the correspondingK functions: for
ϕ̂ ∈ P(H)

〈QM 〉ϕ̂ = Tr(QMPϕ̂) =
√

2� inf
ψ̂∈M

arccos|(ϕ|ψ)| = d(ϕ̂,M).

Therefore, for a pure stateµ = µϕ̂ , we have

P(A, Pϕ̂,X) = µϕ̂(Q
A(X)) = d(ϕ̂,MA(X)),

whereMA(X) is the totally geodesic submanifold ofP(H) canonically associated to the
projective space of the range of the projection operatorQA(X), for a given Borel setX.

The submanifoldMA(X) can be characterized as the unique closed totally geodesic
submanifold ofP(H) such that

〈A〉ϕ̂ ∈ X for ϕ̂ ∈ MA(X), 〈A〉ϕ̂ ∈ R −X for ϕ̂ ∈ (MA(X))⊥.

Every mixed stateΦµ, associated to some density operatorW is aσ convex combination
of pure statesΦµ = ∑

iαiΦµi with µi = µϕ̂i . Therefore, we obtain

P(A,W,X) =
∑
i

αid(ϕ̂i ,M
A(X)).

This gives the geometric content of the probabilistic interpretation.
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